Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
3.
Am J Infect Control ; 50(1): 61-66, 2022 01.
Article in English | MEDLINE | ID: covidwho-1370421

ABSTRACT

BACKGROUND: Planning Ultraviolet-C (UV-C) disinfection of operating rooms (ORs) is equivalent to scheduling brief OR cases. The study purpose was evaluation of methods for predicting surgical case duration applied to treatment times for ORs and hospital rooms. METHODS: Data used were disinfection times with a 3-tower UV-C disinfection system in N=700 rooms each with ≥100 completed treatments. RESULTS: The coefficient of variation of mean treatment duration among rooms was 19.6% (99% confidence interval [CI] 18.2%-21.0%); pooled mean 18.3 minutes among the 133,927 treatments. The 50th percentile of coefficients of variation among treatments of the same room was 27.3% (CI 26.3%-28.4%), comparable to variabilities in durations of surgical procedures. The ratios of the 90th percentile to mean differed among rooms. Log-normal distributions had poor fits for 33% of rooms. Combining results, we calculated 90% upper prediction limits for treatment times by room using a distribution-free method (e.g., third longest of preceding 29 durations). This approach was suitable because, once UV-C disinfection started, the median difference between the duration estimated by the system and actual time was 1 second. CONCLUSIONS: Times for disinfection should be listed as treatment of a specific room (e.g., "UV-C main OR16"), not generically (e.g., "UV-C"). For estimating disinfection time after single surgical cases, use distribution-free upper prediction limits, because of considerable proportional variabilities in duration.


Subject(s)
Disinfection , Ultraviolet Rays , Humans , Operating Rooms , Patients' Rooms
4.
Perioper Care Oper Room Manag ; 21: 100137, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-843597

ABSTRACT

BACKGROUND: Reductions in perioperative surgical site infections are obtained by a multifaceted approach including patient decolonization, vascular care, hand hygiene, and environmental cleaning. Associated surveillance of S. aureus transmission quantifies the effectiveness of these basic measures to prevent transmission of pathogenic bacteria and viruses to patients and clinicians, including Coronavirus Disease 2019 (COVID-19). To measure transmission, the observational units are pairs of successive surgical cases in the same operating room on the same day. In this prospective cohort study, we measured sampling times for inexperienced and experienced personnel. METHODS: OR PathTrac kits included 6 samples collected before the start of surgery and 7 after surgery. The time for consent also was recorded. We obtained 1677 measurements of time among 132 cases. RESULTS: Sampling times were not significantly affected by technician's experience, type of anesthetic, or patient's American Society of Anesthesiologists' Physical Status. Sampling times before the start of surgery averaged less than 5 min (3.39 min [SE 0.23], P < 0.0001). Sampling times after surgery took approximately 5 min (4.39 [SE 0.25], P = 0.015). Total sampling times averaged less than 10 min without consent (7.79 [SE 0.50], P < 0.0001), and approximately 10 min with consent (10.22 [0.56], P = 0.70). CONCLUSIONS: For routine use of monitoring S. aureus transmission, when done by personnel already present in the operating rooms of the cases, the personnel time budget can be 10 min per case.

5.
Curr Anesthesiol Rep ; 10(3): 233-241, 2020.
Article in English | MEDLINE | ID: covidwho-657036

ABSTRACT

PURPOSE OF REVIEW: This review aims to highlight key factors in the perioperative environment that contribute to transmission of infectious pathogens, leading to healthcare-associated infection. This knowledge will provide anesthesia providers the tools to optimize preventive measures, with the goal of improved patient and provider safety. RECENT FINDINGS: Over the past decade, much has been learned about the epidemiology of perioperative pathogen transmission. Patients, providers, and the environment serve as reservoirs of origin that contribute to infection development. Ongoing surveillance of pathogen transmission among these reservoirs is essential to ensure effective perioperative infection prevention. SUMMARY: Recent work has proven the efficacy of a strategic approach for perioperative optimization of hand hygiene, environmental cleaning, patient decolonization, and intravascular catheter design and handling improvement protocols. This work, proven to generate substantial reductions in surgical site infections, can also be applied to aide prevention of SARS-CoV-2 spread in the COVID-19 era.

7.
Anesth Analg ; 131(1): 37-42, 2020 07.
Article in English | MEDLINE | ID: covidwho-599939

ABSTRACT

We describe an evidence-based approach for optimization of infection control and operating room management during the coronavirus disease 2019 (COVID-19) pandemic. Confirmed modes of viral transmission are primarily, but not exclusively, contact with contaminated environmental surfaces and aerosolization. Evidence-based improvement strategies for attenuation of residual environmental contamination involve a combination of deep cleaning with surface disinfectants and ultraviolet light (UV-C). (1) Place alcohol-based hand rubs on the intravenous (IV) pole to the left of the provider. Double glove during induction. (2) Place a wire basket lined with a zip closure plastic bag on the IV pole to the right of the provider. Place all contaminated instruments in the bag (eg, laryngoscope blades and handles) and close. Designate and maintain clean and dirty areas. After induction of anesthesia, wipe down all equipment and surfaces with disinfection wipes that contain a quaternary ammonium compound and alcohol. Use a top-down cleaning sequence adequate to reduce bioburden. Treat operating rooms using UV-C. (3) Decolonize patients using preprocedural chlorhexidine wipes, 2 doses of nasal povidone-iodine within 1 hour of incision, and chlorhexidine mouth rinse. (4) Create a closed lumen IV system and use hub disinfection. (5) Provide data feedback by surveillance of Enterococcus, Staphylococcus aureus, Klebsiella, Acinetobacter, Pseudomonas, and Enterobacter spp. (ESKAPE) transmission. (6) To reduce the use of surgical masks and to reduce potential COVID-19 exposure, use relatively long (eg, 12 hours) staff shifts. If there are 8 essential cases to be done (each lasting 1-2 hours), the ideal solution is to have 2 teams complete the 8 cases, not 8 first case starts. (7) Do 1 case in each operating room daily, with terminal cleaning after each case including UV-C or equivalent. (8) Do not have patients go into a large, pooled phase I postanesthesia care unit because of the risk of contaminating facility at large along with many staff. Instead, have most patients recover in the room where they had surgery as is done routinely in Japan. These 8 programmatic recommendations stand on a substantial body of empirical evidence characterizing the epidemiology of perioperative transmission and infection development made possible by support from the Anesthesia Patient Safety Foundation (APSF).


Subject(s)
Coronavirus Infections/prevention & control , Infection Control/methods , Operating Rooms/organization & administration , Pandemics/prevention & control , Perioperative Care/methods , Pneumonia, Viral/prevention & control , COVID-19 , Disinfection , Evidence-Based Medicine , Hand Hygiene , Humans
8.
Perioper Care Oper Room Manag ; 20: 100115, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-529344

ABSTRACT

Reductions in perioperative surgical site infections are obtained by a multifaceted approach including patient decolonization, hand hygiene, and hub disinfection, and environmental cleaning. Associated surveillance of S. aureus transmission quantifies the effectiveness of the basic measures to prevent the transmission to patients and clinicians of pathogenic bacteria and viruses, including Coronavirus Disease 2019 (COVID-19). To measure transmission, the observational units are pairs of successive surgical cases in the same operating room on the same day. We evaluated appropriate sample sizes and strategies for measuring transmission. There was absence of serial correlation among observed counts of transmitted isolates within each of several periods (all P ≥.18). Similarly, observing transmission within or between cases of a pair did not increase the probability that the next sampled pair of cases also had observed transmission (all P ≥.23). Most pairs of cases had no detected transmitted isolates. Also, although transmission (yes/no) was associated with surgical site infection (P =.004), among cases with transmission, there was no detected dose response between counts of transmitted isolates and probability of infection (P =.25). The first of a fixed series of tests is to use the binomial test to compare the proportion of pairs of cases with S. aureus transmission to an acceptable threshold. An appropriate sample size for this screening is N =25 pairs. If significant, more samples are obtained while additional measures are implemented to reduce transmission and infections. Subsequent sampling is done to evaluate effectiveness. The two independent binomial proportions are compared using Boschloo's exact test. The total sample size for the 1st and 2nd stage is N =100 pairs. Because S. aureus transmission is invisible without testing, when choosing what population(s) to screen for surveillance, another endpoint needs to be used (e.g., infections). Only 10/298 combinations of specialty and operating room were relatively common (≥1.0% of cases) and had expected incidence ≥0.20 infections per 8 hours of sampled cases. The 10 combinations encompassed ≅17% of cases, showing the value of targeting surveillance of transmission to a few combinations of specialties and rooms. In conclusion, we created a sampling protocol and appropriate sample sizes for using S. aureus transmission within and between pairs of successive cases in the same operating room, the purpose being to monitor the quality of prevention of intraoperative spread of pathogenic bacteria and viruses.

9.
J Clin Anesth ; 64: 109854, 2020 09.
Article in English | MEDLINE | ID: covidwho-141546

ABSTRACT

We performed a narrative review to explore the economics of daily operating room management decisions for ambulatory surgery centers following resolution of the acute phase of the Coronavirus Disease 2019 (COVID-19) pandemic. It is anticipated that there will be a substantive fraction of patients who will be contagious, but asymptomatic at the time of surgery. Use multimodal perioperative infection control practices (e.g., including patient decontamination) and monitor performance (e.g., S. aureus transmission from patient to the environment). The consequence of COVID-19 is that such processes are more important than ever to follow because infection affects not only patients but the surgery center staff and surgeons. Dedicate most operating rooms to procedures that are not airway aerosol producing and can be performed without general anesthesia. Increase throughput by performing nerve blocks before patients enter the operating rooms. Bypass the phase I post-anesthesia care unit whenever possible by appropriate choices of anesthetic approach and drugs. Plan long-duration workdays (e.g., 12-h). For cases where the surgical procedure does not cause aerosol production, but general anesthesia will be used, have initial (phase I) post-anesthesia recovery in the operating room where the surgery was done. Use anesthetic practices that achieve fast initial recovery of the brief ambulatory cases. When the surgical procedure causes aerosol production (e.g., bronchoscopy), conduct phase I recovery in the operating room and use multimodal environmental decontamination after each case. Use statistical methods to plan for the resulting long turnover times. Whenever possible, have the anesthesia and nursing teams stagger cases in more than one room so that they are doing one surgical case while the other room is being cleaned. In conclusion, this review shows that while COVID-19 is prevalent, it will markedly affect daily ambulatory workflow for patients undergoing general anesthesia, with potentially substantial economic impact for some surgical specialties.


Subject(s)
Coronavirus Infections , Coronavirus , Pandemics , Pneumonia, Viral , Ambulatory Surgical Procedures , Betacoronavirus , COVID-19 , Humans , Infection Control , Operating Rooms , SARS-CoV-2 , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL